

SLS RODLESS SCREW DRIVE ACTUATOR

○ENDURANCE TECHNOLOGY◎

SLS RODLESS SCREW DRIVE ACTUATOR

CENDURANCE TECHNOLOGY Symbol indicating our durability design

This rodless style actuator is designed for carrying light to moderate loads on a wide, rigid base. Based upon our LS pneumatic linear slide, it utilizes a guidance system consisting of two linear guide rods with recirculating ball bearings for stable, smooth and low friction operation. Built-toorder in stroke lengths up to 3 m [120 inches] with multiple screw options available.

TOLOMATIC...LINEAR SOLUTIONS MADE EASY

- •Black anodized extrusion design is optimized for rigidity and strength
- •External switch channels on both sides allow easy placement and adjustment of position indicating switches
- running the entire length for secure mounting
- Table includes two T-Slot channels for easy attachment of any load

YOUR MOTOR HERE YOU CAN CHOOSE:

- ☐ Motor or gearbox supplied and installed by Tolomatic
- ☐ Specify the device to be installed and actuator ships with proper mounting hardware
- ☐ Specify and ship your device to Tolomatic for factory installation
- LMI (inline) motor mount only

∽STAINLESS STEEL SE/

- •Prevents contaminants from entering the screw and nut area for prolonged life
- Fatigue resistant stainless steel bands are specifically made to offer long life and will not elongate

OPTIONS

CARRIER OPTIONS

AUXILIARY CARRIER Doubles the load capacity and increases bending moments capacity significantly

■ METRIC OPTION

Provides metric tapped holes for mounting of load to carrier and of actuator

SWITCHES

Styles include: reed, hall-effect or triac. Select either 5m potted cable with flying leads or 150mm to quick-disconnect coupler with mating 5m cable

ACME SCREW SPECIFICATIONS

sizeit.tolomatic.com for fast, accurate actuator selection

SLS10 ACME SCREW CRITICAL SPEED AND PV LIMITS

PV LIMITS: 12mm ACME METRIC SCREW w/25mm LEAD 900 800 700 400 500 200 400 600 800 1000 1200 1400 1500

PV LIMITS: 1/2" 5 TPI US CONVENTIONAL ACME SCREW

PV LIMITS: Any material which carries a sliding load is limited by heat buildup. The factors that affect heat generation rate in an application are the pressure on the nut in pounds per square inch and the surface velocity in feet per minute. The product of these factors provides a measure of the severity of an application.

BALL SCREW SPECIFICATIONS

SLS10 BALL SCREW SPECIFICATIONS

BN = Ball Nut

* Maximum thrust reflects 90% reliability for 25 million linear millimeters of travel.

**Life indicates theoretical maximum life of screw only, under ideal conditions and does not indicate expected life of actuator.

SPECIFICATIONS

sizeit.tolomatic.com for fast, accurate actuator selection

SPECIFICATIONS RELATED TO ACTUATOR SIZE AND SCREW SELECTION

	METRIC LEAD SCREWS															
ACTUATOR	TUATOR SCREW SCREW		CCDEW	SCDEM LEA		SCREW LEAD		CCDEW	LEAD	LEAD	BACKLASH	MAXIMUM	MAXIMUM	INERTIA (k	g-m² x 10 ⁻⁶)	BREAKAWAY
SERIES	DIA.	TYPE	(mm/	ACCURACY	DAUNLAUII	THRUST	STROKE	BASE ACTUATOR	PER/mm	TORQUE						
OLINEO	(mm)	1111	turn)	(mm/300)	(mm)	(N)	(mm)	In Line	OF STROKE	(N-m)						
	10	BN	3.2	0.13	0.38	578	1549	37.50	3.47	0.12						
SLS10	10	BNL	3.2	0.13	0.05	578	1549	37.50	3.47	0.12						
OLO 10	12	SN	12	0.13	0.18	800	3048	6.49	0.41	0.17						
	12	SN	25	0.13	0.18	800	1626	15.01	0.41	0.17						

	US CONVENTIONAL LEAD SCREWS									
ACTUATOR	SCREW	SCREW TPI LE		LEAD	BACKLASH	MAXIMUM	MAXIMUM	INERTIA	A (lb-in²)	BREAKAWAY
SERIES	DIA.	TYPE	(turns/	ACCURACY	DAUNLAUII	THRUST*	STROKE	BASE ACTUATOR	PER/in	TORQUE
JEHILD	(in)	11112	in)	(in/ft)	(in)	(lb)	(in)	In Line	OF STROKE	(lb-in)
	0.375	BN	08	0.004	0.015	130	61	0.0054	0.0005	1.063
	0.375	BNL	08	0.004	0.002	130	61	0.0054	0.0005	1.063
SLS10	0.500	SN	01	0.006	0.007	170	85	0.0554	0.0017	1.875
OLOTO	0.500	SN	02	0.005	0.007	170	120	0.0262	0.0017	1.438
	0.500	SNA	02	0.005	0.003	170	120	0.0262	0.0017	1.438
	0.500	SN	05	0.006	0.007	170	120	0.0180	0.0017	1.250

SCREW CODE DESCRIPTION

SN Solid Nut

SNA Anti-backlash Solid Nut

BN Ball Nut

BNL Low-Backlash Ball Nut

9....

Contact Tolomatic for higher accuracy and lower backlash options.

* For Acme screws, maximum thrust is the maximum continuous dynamic thrust subject to Thrust x Velocity limitation. For ball screws, maximum thrust reflects 90% reliability for 25 million linear millimeters of travel.

GENERAL ACTUATOR SPECIFICATIONS

SLS METRIC ACTUATORS							
ACTUATOR SERIES	CARRIER Weight (kg)	BASE WEIGHT (kg) (Including Carrier)	WEIGHT PER/IN OF STROKE (g)	TEMPERATURE Range (C°)	IP RATING**		
SLS10	0.69	2.74	7.23	4-54	44		

SLS US CONVENTIONAL ACTUATORS								
ACTUATOR SERIES	CARRIER WEIGHT (lb)	BASE WEIGHT (lb) (Including Carrier)	WEIGHT PER/IN OF STROKE (lb)	TEMPERATURE Range (F°)	IP RATING*			
SLS10	1.54	6.05	0.404	40 - 130	44			

- Heat generated by the motor and drive should be taken into consideration as well as linear velocity and work cycle time. For applications that require operation outside of the recommended temperature range, contact Tolomatic.
- ** Protected against ingress of solid particles greater than 1mm (.039 in) and splashing water.

LARGE FRAME MOTORS AND SMALLER SIZE ACTUATORS: Cantilevered motors need to be supported, if subjected to continuous rapid reversing duty and/or under dynamic conditions.

SPECIFICATIONS

FRICTION FORCE

SUPPORT RECOMMENDATIONS

SPECIFICATIONS

sizeit.tolomatic.com for fast, accurate actuator selection

DYNAMIC BENDING MOMENTS AND LOADS

	MAXIMUM BENDING MON	IENTS AND LOADS	METRIC	US CONVENTIONAL
STANDARD CARRIER			SLS10	SLS10
Fz 1	Mx Moment (Roll)	(N-m : lb-in)	9.0	80
Mz	My Moment (Pitch)	(N-m : lb-in)	9.0	80
Mx	Mz Moment (Yaw)	(N-m : lb-in)	14.1	125
	Fz Moment (Lateral)	(N : lb)	445	100
AUXILIARY CARRIER: Increases rigidity, lo	SLS10	SLS10		
Fz 1	Mx Moment (Roll)	(N-m : lb-in)	18.1	160
Mz	My Moment (Pitch)	(N-m : lb-in)	20.1	178
Mx	Mz Moment (Yaw)	(N-m : lb-in)	31.3	278
"D"	Fz Moment (Lateral)	(N : lb)	890	200
	Minimum Dimension 'D'	(mm : in)	169.7	5.5

Breakaway torque will increase when using the Auxiliary carrier option. When ordering, determine your working stroke and enter this value into the configuration string. Overall actuator length will automatically be calculated.

*Loads shown in table are at minimum "D" dimension, for ratings with longer "D" dimension see graph below

AUXILIARY CARRIER: BENDING MOMENT AT 'D' DISTANCE

Rates shown on charts were calculated with these assumptions:

- 1.) Coupling between carriers is rigid.
- 2.) Load is equally distributed between carriers.

- 3.) Coupling device applies no misalignment loads to carriers.
- * Customer must specify Dimension "D" (Distance between carrier center lines) in configuration string.

SPECIFICATIONS

LOAD DEFLECTION

Y-AXIS DEFLECTION

Figures calculated with the following considerations:

- 1.) Tube supports spaced at minimum distances for each bore size
- 2.) Measurement distance from F to center of carrier is 6 inches

X-AXIS DEFLECTION

Figures calculated with the following considerations:

- 1.) Tube supports spaced at minimum distances for each bore size
- 2.) Measurement distance from F to center of carrier is 8 inches

DIMENSIONS

SLS10: IN-LINE MOUNT FOR BRUSHLESS MOTORS AND GEARHEADS

(Your Motor Here)

DIMENSIONS

3D CAD available at www.tolomatic.com
Always use configurated CAD solid model to determine critical dimensions

SLS10 ACTUATOR AND OPTIONS DIMENSIONS

Unless otherwise noted, all dimensions shown are in inches (Dimensions in parenthesis are in millimeters)

SWITCHES

There are 10 sensing choices: DC reed, form A (open) or form C (open or closed); AC reed (Triac, open); Hall-effect, sourcing, PNP (open); Hall-effect, sinking, NPN (open); each with either flying leads or QD (quick disconnect). Commonly used to send analog signals to PLC (programmable logic controllers), TLL, CMOS circuit or other controller device. These switches are activated by the actuator's magnet.

Switches contain reverse polarity protection. QD cables are shielded; shield should be terminated at flying lead end.

If necessary to remove factory installed switches, be sure to reinstall on the same of side of actuator with scored face of switch toward internal magnet.

SPECIFICATIONS

	REED DC			REED AC		HALL-EFFECT DC				
ORDER COD	RT	RM	BT	ВМ	CT	CM	TT	TM	KT	KM
LEAI	5m	QD*	5m	QD*	5m	QD*	5m	QD*	5m	QD*
CABLE SHIELDING	Unshielded	Shielded†	Unshielded	Shielded†	Unshielded	Shielded†	Unshielded	Shielded†	Unshielded	Shielded†
SWITCHING LOGIC	"A" Norm	nally Open	"C" Normally (Open or Closed	Triac Norr	nally Open	PNP (Sourcii Op	ng) Normally en	NPN (Sinking)	Normally Open
MECHANICAL CONTACTS	Single-Pole	Single-Throw	Single-Pole [Double-Throw	Single-Pole	Single-Throw	NO,	These Are Soli	d State Compon	ents
COIL DIRECT	Γ Y	es	Y	es	Υ	es		_	_	
POWER LEI			No	one	No	one	None		None	
SIGNAL LEI	i iicu 🗀	TOL-O-MATIC					Red <u>●</u>	TOL-O-MATIC	I IICU L	TOL-O-MATTIC
OPERATING VOLTAG	GE 200 Vdc max.		120 Vdc max.		120 Vac max.			5 - 25 Vdc		
OUTPUT RATING	IG —				25 Vdc, 200mA dc					
OPERATING TIM	OPERATING TIME 0.6 msec max. (including bounce)		0.7 msec max. (including bounce)		_			< 10 micro sec.		
OPERATING TEMPERATUR		-40°F [-40°C]		to 158°F [70°C]			0°F [-18°C] to 150°F [66°C]			
RELEASE TIM	<u> </u>	1.0 mse	ec. max.		_		-			
ON TRIP POIN	Г	_	_		_		150 Gauss maximum			
OFF TRIP POIN	Г	_	_		_		40 Gauss minimum			
**POWER RATING (WATTS	POWER RATING (WATTS) 10.0 § 3.0 §§		10.0		5.0					
VOLTAGE DRO	VOLTAGE DROP 2.6 V typical at 100 mA NA		-		-					
RESISTANC	RESISTANCE 0.1 Ω Initial (Max.)					_				
CURRENT CONSUMPTION —			1 Amp at 86°F [30°C]	0.5 Amp at 140°F [60°C]	200 mA at 25 Vdc					
FREQUENC	<u> </u>			47 - 63 Hz —						
CABLE MIN. STATIO	;				0.630" [16mm]					
BEND RADIUS DYNAMIC	;				Not Reco	mmended				

A CAUTION: DO NOT OVER TIGHTEN SWITCH HARDWARE WHEN INSTALLING!

** WARNING: Do not exceed power rating (Watt = Voltage X Amperage). Permanent damage to sensor will occur.

*QD = Quick Disconnect; Male coupler is located 6" [152mm] from sensor,

Female coupler to flying lead distance is 197" [5m] also see Cable Shielding specification above

REPLACEMENT OF QD SWITCHES MANUFACTURED BEFORE JULY 1, 1997: It will be necessary to replace or rewire the female end coupler.

Quick disconnect SIGNAL Wiring

Reed Switch Life Expectancy: Up to 200,000,000 cycles (depending on load current, duty cycle and environmental conditions)

†Shielded from the female quick disconnect coupler to the flying leads. Shield should be terminated at flying lead end.

^{§§} Maximum current 250mA (not to exceed 3VA) Refer to Temperature vs. Current graph and Voltage Derating graph

[§] Maximum current 500mA (not to exceed 10VA) Refer to Temperature vs. Current graph and Voltage Derating graph

PERFORMANCE

TEMP. vs CURRENT, DC REED

TEMP. vs CURRENT, AC REED

VOLTAGE DERATING, DC REED

WIRING DIAGRAMS

DE DO DEED FORM A

CT & CM AC REED, TRIAC

INSTALLATION INFORMATION

BT & BM DC REED, FORM C

TT & TM HALL-EFFECT, SOURCING, PNP

KT & KM HALL-EFFECT, SINKING, NPN

COMPILE APPLICATION REQUIREMENTS

APPLICATION DATA WORKSHEET

Fill in known data. Not all information is required for all applications

_						_	
_	n ı			- 8	-	^	B I
	ĸ	EN	.				N
.,	111			м		u	ıv

☐ Load attached to carrier OR ☐ Load supported by other mechanism

DISTANCE FROM
CENTER OF CARRIER
TO LOAD CENTER
OF GRAVITY

inch (SK) (U.S. Standard)

□ lb.

(U.S. Standard)

inch (U.S. Standard)

☐ millimeters

<u>`_</u>
♣ ,,,_
Mz
Fy A
7 Wly
MX Y

 \square N

(Metric)

Fz

BENDING MOMENTS APPLIED TO CARRIER My

in.-lbs. (U.S. Standard) □ N-m M_Z ____

PRECISION

Repeatability_

☐ inch ☐ millimeters

LOAD

☐ kg.

(Metric)

THRUST REQUIRED

☐ lbf. (U.S. Standard)

OPERATING ENVIRONMENT

Temperature, Contamination, etc.

MOVE PROFILE

Move Distance ☐ inch ☐ millimeters

Dwell Time After Move Max. Speed

☐ in/sec ☐ mm/sec

MOVE TIME

NO. OF CYCLES

□ sec

per minute per hour

MOTION PROFILE

Graph your most demanding cycle, including accel/decel, velocity and dwell times. You may also want to indicate load variations and I/O changes during the cycle. Label axes with proper scale and units.

USE THE TOLOMATIC SIZING AND SELECTION SOFTWARE AVAILABLE ON-LINE AT www.tolomatic.com OR... CALL TOLOMATIC 1-800-328-2174 with the above information. We will provide any assistance needed to determine the proper MX actuator for the job.

FAX 1-763-478-8080

CONTACT INFORMATION

Name, Phone, Email Co. Name, Etc.

SELECTION GUIDELINES

The process of selecting a load bearing actuator for a given application can be complex. It is highly recommended that you contact Tolomatic or a Tolomatic Distributor for assistance in selecting the best actuator for your application. The following overview of the selection guidelines are for educational purposes only.

COMPARE LOAD TO MAXIMUM LOAD CAPACITIES

Calculate the applicaload (combination tion of load mass and forces applied to the carrier) and application bending moments (sum of all moments Mx, My, and Mz applied to the carrier). Be sure to evaluate the magnitude of dynamic inertia moments. When a rigidly attached load mass is accelerated or decelerated, its inertia induces bending moments on the carrier. Careful attention to how the load is decelerated at the end of the stroke is required for extended actuator performance and application safety. If either load or any of your moments exceed figures indicated in the Moment and Load Capacity table (pg. sls_8) for the actuator consider:

- 1) Higher capacity bearing style
- 2) A different actuator style

(B3S, MXE, etc.)

- 3) Auxiliary carrier
- 4) External guide system

2 CALCULATE LOAD FACTOR LF

For loads with a center of gravity offset from the carrier account for both applied (static) and dynamic loads. The load factor (LF) must not exceed the value of 1.

$$L_F = \frac{Mx}{Mx_{max}} + \frac{My}{My_{max}} + \frac{Mz}{Mz_{max}} + \frac{Fy}{Fy_{max}} + \frac{Fz}{Fz_{max}} \leq 1$$

If LF does exceed the value of 1, consider the four choices listed in step #2.

3 ESTABLISH YOUR MOTION PROFILE AND CALCULATE ACCELERATION RATE

Using the application stroke length and maximum carrier velocity (or time to complete the linear motion), establish the motion profile. Select either triangular (accel-decel) or trapezoidal (accel-constant speed-decel) profile. Now calculate the maximum acceleration and deceleration rates of the

SPEED FACTOR

FOR APPLICATIONS WITH HIGH SPEED OR SIGNIFICANT SHOCK AND VIBRATION: Calculated values of loads and bending moments must be increased by speed factor from the graph below to obtain full rated life of profiled rail bearing system.

move. Speed should not exceed critical speed value as shown in graph (page SLS_4-5) for the screw/nut combination chosen. Also, do not exceed safe rates of dynamic inertia moments determined in step #3.

SELECT THE LEAD SCREW

Based on the application requirements for accuracy, backlash, quiet operation, life, etc. select the appropriate lead screw type (Acme screw with a solid nut or ball screw with a standard or anti-backlash nut) and the pitch (lead). For additional information on screw selection, consult "Which Screw? Picking the Right Technology" (#9900-4644) available at www.tolomatic.com.

5 SELECT MOTOR (GEARHEAD IF NECESSARY) AND DRIVE

To help select a motor and drive, use the sizing equations located in the Engineering Resources section [ENGR] to calculate the application thrust and torque requirements. Refer to Motor sections [MRV] & [MRS] to determine the motor and drive.

6 DETERMINE T-NUTS/ MOUNTING PLATE

REQUIREMENTS

- Consult the Support Recommendations graph for the model selected (page SLS_7)
- Cross reference the application load and maximum distance between supports
- Select the appropriate number of T-nuts, and mounting plates if required for motor and adapter clearance.

CONSIDER OPTIONS

- Choose metric or inch (US Conventional) load mounting.
- Switches Reed, Solid State PNP or NPN, all available normally open or normally closed

ORDERING

BASE MODEL SPECIFICATIONS

SLS 10 SNO2 SK25 LMI

OPTIONS SPECIFICATIONS

DC18 KT2 TN4 MP2

MODEL TYPE

SLS SLS Series US Conventional Screw Drive

SIZE

10

NUT/SCREW CONFIGURATION

INCH MODELS	METRIC
(US Conventional)	Models†
SOLID NUT /	SOLID NUT /
PITCH (turn/in)	LEAD (mm/turn)
SN01 SN02 SNA02 SN05	SN25 SN12
BALL NUT /	BALL NUT /
PITCH (turn/in)	LEAD (turn/in)
BN08	BN08
BNL08	BNL08

† The metric version provides metric tapped holes for mounting of the load to the carrier and of the actuator to mounting surfaces

STROKE LENGTH & MOUNTING TYPE

SK __.__ Stroke, enter desired stroke length in inches

SM†__._ Stroke, enter desired stroke length in millimeters

NOTE: Actuator mounting threads and mounting fasteners will be either inch or metric; depending on how stroke length is indicated.

SK = inch mounting **SM** = metric mounting

FIELD RETROFIT KITS						
ITEM	SLS10_SK	SLS10_SM				
1/4" Mounting Plates	0610-9010	0610-9010				
1/2" Mounting Plates	0610-9045	0610-9045				

MOTOR MOUNTING / REDUCTIONS

(must choose one)

LMI In-Line mounting

**LMX Extended shaft - old style (see note)

** For replacement actuators with extended motor shafts purchased prior to 6/24/02 use LMX

AUXILIARY CARRIER (SLS_8)

DC Auxiliary Carrier, then center-tocenter spacing desired in in inches (SK) or millimeters (SM).

Same unit of measure as stroke length is required)

Center-to-center spacing between carriers adds to overall length of the actuator, this distance will not be subtracted from stroke length specified in the previous step.

MINIMUM "D" DISTANCE BETWEEN CARRIERS

	in	mm
10	5.5	169.7

"YOUR MOTOR HERE" MADE-TO-ORDER

 Select a high-performance Tolomatic electric actuator and we'll provide a motor-specific inter-

face for your motor. With our online database,

you can select from over 60 motor manufactur-

Visit www.tolomatic.com/ymh to find your

Your Motor Here

MOTOR MOUNTS. 3 WEEKS.

ers and hundreds of models.

motor/actuator match!

SWITCHES

- **RM**_ Reed Switch (Form A) with 5-meter lead/QD (quick-disconnect), & quantity
- RT_ Reed Switch (Form A) with 5-meter lead, and quantity desired
- **BM**_ Reed Switch (Form C) with 5-meter lead/QD, and quantity desired
- BT_ Reed Switch (Form C) with 5-meter lead, and quantity desired
- KM_ Hall-effect Sinking Switch with 5-meter lead/QD, and quantity desired
- KT_ Hall-effect Sinking Switch with 5-meter lead, and quantity desired
- **TM**_ Hall-effect Sourcing Switch with 5-meter lead/QD, and quantity desired
- TT_ Hall-effect Sourcing Switch with
- 5-meter lead, and quantity desired
 TRIAC Switch with 5-meter lead/QD,
 and quantity desired
- CT_ TRIAC Switch with 5-meter lead, and quantity desired

T-NUT OPTION

TN_ Additional T-nuts and quantity

MOUNTING PLATES

MP Mounting Plates plus quantity desired

FOOD GRADE LUBRICATION

LUB Grease, Food/Drug

Not all codes listed are compatible with all options.

Use the Sizing Software to determine available options and accessories based on your application requirements.

NOTE: MRB & MRV motors are discontinued contact Tolomatic for information on YMH (Your Motor Here)

Tolomatic

The Tolomatic Difference Expect More From the Industry Leader:

Tolomatic designs and builds the best standard products, modified products & unique custom products for your challenging applications.

The fastest delivery of catalog products... Electric products are built-to-order in 15 or 20 days; Pneumatic & Power Transmission products in 5 days.

Online sizing that is easy to use, accurate and always up-to-date. Find a Tolomatic electric actuator to meet your requirements.

Match your motor with compatible mounting plates that ship with any Tolomatic electric actuator.

Easy to access CAD files available in the most popular formats to place directly into your assembly.

Our people make the difference! Expect prompt, courteous replies to all of your application and product questions.

Also Consider These Other Tolomatic Products:

Electric Products

Rod & Guided Rod Style Actuators, High Thrust Actuators, Screw & Belt Drive Rodless Actuators, Motors, Drives and Controllers

"Foldout" Brochure #9900-9074

Pneumatic Products

Rodless Cylinders: Band Cylinders, Cable Cylinders, Magnetically Coupled Cylinders/Slides; Guided Rod Cylinder Slides

"Foldout" Brochure #9900-9075

Power Transmission Products

Gearboxes: Float-A-Shaft®, Slide-Rite®; Disc Cone Clutch; Caliper Disc Brakes

"Foldout" Brochure #9900-9076

TolomaticEXCELLENCE IN MOTION

USA

3800 County Road 116 Hamel, MN 55340, USA **Phone:** (763) 478-8000 **Fax:** (763) 478-8080 Toll-Free: **1-800-328-2174** sales@tolomatic.com

www.tolomatic.com

CHINA

Tolomatic Automation Products (Suzhou) Co. Ltd.

(ServoWeld® inquiries only)

No. 60 Chuangye Street, Building 2 Huqiu District, SND Suzhou Jiangsu 215011 - P.R. China

Phone: +86 (512) 6750-8506 **Fax:** +86 (512) 6750-8507

ServoWeldChina@tolomatic.com

COMPANY WITH
QUALITY SYSTEM
CERTIFIED BY DNV GL
= ISO 9001 =
Certified site: Hamel, MN

EUROPE

Tolomatic Europe GmbH

Elisabethenstr. 4 & 8 D-65428 Rüsselsheim Germany

Phone: +49 6142 17604-0 EuropeSales@tolomatic.com

All brand and product names are trademarks or registered trademarks of their respective owners. Information in this document is believed accurate at time of printing. However, Tolomatic assumes no responsibility for its use or for any errors that may

appear in this document. Tolomatic reserves the right to change the design or operation of the equipment described herein and any associated motion products without notice. Information in this document is subject to change without notice.

Visit www.tolomatic.com for the most up-to-date technical information

© 2018 TOLOMATIC 201811141357 LITERATURE NUMBER: **3600-4182 03**