EXCELLENCE IN MOTION

SLS RODLESS SCREW DRIVE ACTUATOR

OETDORMNE TEDNOLOBY6

CONTENTS
SLS Features...........................SL_2
Critical Speed Capacities.............S__
Specifications.....
Support Recommendations......... SLS_7
SLS10 Dimensionss_s
Switches....
Application Data Worksheet........SL_ 13
Selection Guidelines.... \quad. .SLS_14
Ordering..........................SL_15

SLS RODLESS SCREW DRIVE ACTUATOR

Look for this endurance technology symbol indicating our durability design features

This rodless style actuator is designed for carrying light to moderate loads on a wide, rigid base. Based upon our LS pneumatic linear slide, it utilizes a guidance system consisting of two linear guide rods with recirculating ball bearings for stable, smooth and low friction operation. Built-toorder in stroke lengths up to 3 m [120 inches] with multiple screw options available.

OLOID-BEARING GIRRIER DESIGNO

- Four recirculating ball bearings provide guidance, low friction loss and long life
- Load and moments are transmitted directly to the actuator body

OFORMED END GIP WIPERSC
-Prevent contaminants from entering the sealing band area to protect internal components
-MULTIPLE SCREW TECHNOLOGIES• YOU CAN CHOOSE:
\square Solid nuts of bronze or engineered resins offering quiet performance at the lowest cost; anti-backlash available
\square Ball nuts offer positioning accuracy and repeatability with longer life; low-backlash

OSHREW SUPPORT BERAILIGSO

- High thrust bearing assembly design
isolates the motor from axial forces

TOLOMATIC...LINEAR SOLUTIONS MADE EASY

YOUR MOTOR HERE YOU CAN CHOOSE:

\square Motor or gearbox supplied and installed by Tolomatic
\square Specify the device to be installed and actuator ships with proper mounting hardware
\square Specify and ship your device to Tolomatic for factory installation
LMI (inline) motor mount only

OLIGTINEHMT AIUNITUUM DESTHTO

- Black anodized extrusion design is optimized for rigidity and strength
- External switch channels on both sides allow easy placement and adiustment of position indicating switches

SSTATLLES STEE SEALIU BANDO

- Prevents contaminants from entering the screw and nut area for prolonged life
- Fatigue resistant stainless steel bands are specifically made to offer long life and will not elongate

OPTIONS

CARRIER OPTIONS

\square AUXILIARY CARRIER Doubles the load capacity and increases bending moments capacity significantly

METRIC OPTION

Provides metric tapped holes for mounting of load to carrier and of actuator

SWITCHES

Styles include: reed, hall-effect or triac. Select either 5 m potted cable with flying leads or 150 mm to quick-disconnect coupler with mating 5 m cable

SLS10 Rodless Screw Drive Actuator
 ACME SCREW SPECIFICATIONS

SLS10 ACME SCREW CRITICAL SPEED AND PV LIMITS

PV LIMITS: 12 mm ACME METRIC SCREW w/25mm LEAD

PV LIMITS: 12mm ACME METRIC SCREW w/12mm LEAD

SN = Solid Nut
SNA = Solid Anti-backlash Nut

* Maximum thrust is the maximum continuous dynamic thrust subject to Thrust x Velocity limitation.
PV LIMITS: Any material which carries a sliding load is limited by heat buildup. The factors that affect heat generation rate in an application are the pressure on the nut in pounds per square inch and the surface velocity in feet per minute. The product of these factors provides a measure of the severity of an application.

P	X	V
$\left(\frac{\text { Thrust }}{\text { (Max. Thrust Rating })}\right)$	\mathbf{x}	$\mathbf{0 . 1}$
$\left(\frac{\text { Speed }}{\text { (Max. Speed Rating })}\right)$	≤ 0.1	

CRITICAL SPEED WITH 1/2" US CONVENTIONAL ACME SCREW

PV LIMITS: 1/2" 1 TPI US CONVENTIONAL AGME SGREW

PV LIMITS: 1/2" 2 TPI US CONVENTIONAL ACME SCREW

PV LIMITS: 1/2" 5 TPI US CONVENTIONAL ACME SCREW

SLS10 Rodless Screw Drive Actuator

BALL SCREW SPECIFICATIONS

SLS10 BALL SCREW SPECIFICATIONS

LIFE CALCULATION: 10 mm METRIC BALL SCREW w/3.2mm LEAD

LIFE CALCULATION: 3/8" 8 IPI US CONVENTIONAL BALL SCREW

BN = Ball Nut

북

* Maximum thrust reflects 90\% reliability for 25 million linear millimeters of travel.
**Life indicates theoretical maximum life of screw only, under ideal conditions and does not indicate expected life of actuator.

SLS10 Rodless Screw Drive Actuator

SPECIFICATIONS RELATED TO ACTUATOR SIZE AND SCREW SELECTION

METRIC LEAD SCREWS										
ACTUATOR SERIES	SCREW DIA. (mm)	SCREWTYPE	$\begin{gathered} \text { LEAD } \\ \text { (mm/ } \\ \text { turn) } \\ \hline \end{gathered}$	LEAD ACCURACY (mm/300)	BACKLASH (mm)	MAXIMUM THRUST (N)	MAXIMUM STROKE (mm)	INERTIA (kg-m $\left.{ }^{2} \times 10^{-6}\right)$		BREAKAWAY TORQUE ($\mathrm{N}-\mathrm{m}$)
								BASE ACTUATOR	PER/mm	
								In Line	OF STROKE	
SLS10	10	BN	3.2	0.13	0.38	578	1549	37.50	3.47	0.12
	10	BNL	3.2	0.13	0.05	578	1549	37.50	3.47	0.12
	12	SN	12	0.13	0.18	800	3048	6.49	0.41	0.17
	12	SN	25	0.13	0.18	800	1626	15.01	0.41	0.17

US CONVENTIONAL LEAD SCREWS										
$\begin{array}{\|l} \text { ACTUATOR } \\ \text { SERIES } \end{array}$	SCREW DIA. (in)	$\begin{aligned} & \text { SCREW } \\ & \text { TYPE } \end{aligned}$	TPI (turns/ in)	LEAD ACCURACY (in/ft)	BACKLASH (in)	MAXIMUM THRUST* (b)	MAXIMUM STROKE (in)	INERTIA ($\left(\mathrm{lb}-\mathrm{in}^{2}\right.$)		BREAKAWAY TORQUE (bb-in)
								BASE ACTUATOR	PER/in	
								In Line	OF STROKE	
SLS10	0.375	BN	08	0.004	0.015	130	61	0.0054	0.0005	1.063
	0.375	BNL	08	0.004	0.002	130	61	0.0054	0.0005	1.063
	0.500	SN	01	0.006	0.007	170	85	0.0554	0.0017	1.875
	0.500	SN	02	0.005	0.007	170	120	0.0262	0.0017	1.438
	0.500	SNA	02	0.005	0.003	170	120	0.0262	0.0017	1.438
	0.500	SN	05	0.006	0.007	170	120	0.0180	0.0017	1.250

SCREW CODE DESCRIPTION

SN Solid Nut

SNA Anti-backlash Solid Nut
BN Ball Nut
BNL Low-Backlash Ball Nut

Contact Tolomatic for higher accuracy and lower backlash options.

* For Acme screws, maximum thrust is the maximum continuous dynamic thrust subject to Thrust x Velocity limitation. For ball screws, maximum thrust reflects $\mathbf{9 0 \%}$ reliability for 25 million linear millimeters of travel.

GENERAL ACTUATOR SPECIFICATIONS

SLS METRIC ACTUATORS					
ACTUATOR SERIES	CARRIER WEIGHT (kg)	BASE WEIGHT (kg) (Including Carrier)	WEIGHT PER/N OF STROKE (g)	TEMPERATURE RANGE (C) $)$	IP RATING**
SLS10	0.69	2.74	7.23	$4-54$	44

SLS US CONVENTIONAL AGTUATORS

ACTUATOR SERIES	CARRIER WEIGHT (lb)	BASE WEIGHT (lb) (Including Carrier)	WEIGHT PER/N OF STROKE (b)	TEMPERATURE RANGE (F$)$	IP RATING*
SLS10	1.54	6.05	0.404	$40-130$	44

* Heat generated by the motor and drive should be taken into consideration as well as linear velocity and work cycle time. For applications that require operation outside of the recommended temperature range, contact Tolomatic.
** Protected against ingress of solid particles greater than $1 \mathrm{~mm}(.039 \mathrm{in})$ and splashing water.
LARGE FRAME MOTORS AND SMALLER SIZE ACTUATORS: Cantilevered motors need to be supported, if subjected to continuous rapid reversing duty and/or under dynamic conditions.

SLS10 Rodless Screw Drive Actuator

SPECIFICATIONS

FRICTION FORCE

SUPPORT RECOMMENDATIONS

SLS10 Rodless Screw Drive Actuator

DYNAMIC BENDING MOMENTS AND LOADS

	MAXIMUM BENDING MOMENTS AND LOADS		METRIC	US CONVENTIONAL
STANDARD CARRIER			SLS10	SLS10
	Mx Moment (Roll)	($\mathrm{N}-\mathrm{m}: 1 \mathrm{lb}-\mathrm{n})$	9.0	80
	My Moment (Pitch)	($\mathrm{N}-\mathrm{m}: 1 \mathrm{l}-\mathrm{in})$	9.0	80
	Mz Moment ((aw)	($\mathrm{N}-\mathrm{m}: 1 \mathrm{lb}-\mathrm{n})$	14.1	125
	Fz Moment (Latera)	($\mathrm{N}: ~ \mathrm{lb})$	445	100
AUXILIARY CARRIER: Increases rigidity, load-carrying capacity and moments			SLS10	SLS10
	Mx Moment (Roll)	(N-m: lb-in)	18.1	160
	My Moment (Pitch)	(N-m: lb-in)	20.1	178
	Mz Moment (Naw)	(N-m: lb-in)	31.3	278
	Fz Moment (Latera)	($\mathrm{N}: 1 \mathrm{l})$	890	200
	Minimum Dimension 'D'	(mm : in)	169.7	5.5

A
Breakaway torque will increase when using the Auxiliary carrier option. When ordering, determine your working stroke and enter this value into the configuration string. Overall actuator length will automatically be calculated.
*Loads shown in table are at minimum " D " dimension, for ratings with longer " D " dimension see graph below
AUXILIARY CARRIER: BENDING MOMENT AT ‘D’ DISTANCE

Rates shown on charts were calculated with these assumptions:
1.) Coupling between carriers is rigid.
2.) Load is equally distributed between carriers.
3.) Coupling device applies no misalignment loads to carriers.

* Customer must specify Dimension "D" (Distance between carrier center lines) in configuration string.

SLS10 Rodless Screw Drive Actuator

SPECIFICATIONS

LOAD DEFLECTION

Y-AXIS DEFLECTION

Figures calculated with the following considerations:
1.) Tube supports spaced at minimum distances for each bore size
2.) Measurement distance from F to center of carrier is 6 inches

X-AXIS DEFLECTION

Figures calculated with the following considerations:
1.) Tube supports spaced at minimum distances for each bore size
2.) Measurement distance from F to center of carrier is 8 inches

DIMENSIONS

SLS10: IN-LINE MOUNT FOR BRUSHLESS MOTORS AND GEARHEADS

SLS10 Rodless Screw Drive Actuator

SLS10 ACTUATOR AND OPTIONS DIMENSIONS

SLS Rodless Screw Drive Actuator

SWITCHES

There are 10 sensing choices：DC reed，form A（open）or form C（open or closed）；AC reed（Triac，open）；Hall－effect，sourcing，PNP（open）；Hall－effect， sinking，NPN（open）；each with either flying leads or QD（quick disconnect）． Commonly used to send analog signals to PLC（programmable logic controllers），TLL，CMOS circuit or other controller device．These switches are activated by the actuator＇s magnet．

Switches contain reverse polarity protection．QD cables are shielded；shield should be terminated at flying lead end．

If necessary to remove factory installed switches，be sure to reinstall on the same of side of actuator with scored face of switch toward internal magnet．

SPECIFICATIONS

ORDER CODE	REED DC				REED AC		HALL－EFFECT DC					
	回团	R 匈	B T $^{\text {d }}$	B ${ }^{\text {M }}$	C］	C．	TT	T ${ }^{\text {M }}$	图固	图		
LEAD	5 m	QD＊										
CABLE SHIELDING	Unshielded	Shieldedt	Unshielded	Shielded \dagger	Unshielded	Shielded \dagger	Unshielded	Shieldedt	Unshielded	Shielded \dagger		
SWITCHING LOGIC	＂A＂Normally Open		＂C＂Normally Open or Closed		Triac Normally Open		PNP（Sourcing）NormallyOpen		NPN（Sinking）Normally Open			
MECHANICAL CONTACTS	Single－Pole Single－Throw		Single－Pole Double－Throw		Single－Pole Single－Throw		NO，These Are Solid State Components					
COIL DIRECT	Yes		Yes		Yes		－					
POWER LED	None											
SIGNAL LED					Red	－amment	Red	O－mant				
OPERATING VOLTAGE	200 Vdc max．		120 Vdc max．				120 Vac max．		5－25 Vdc			
OUTPUT RATING	－				－		$25 \mathrm{Vdc}, 200 \mathrm{~mA} \mathrm{dc}$					
OPERATING TIME	0.6 msec max． （including bounce）		0.7 msec max． （including bounce）		－		<10 micro sec．					
OPERATING TEMPERATURE	$-40^{\circ} \mathrm{F}\left[-40^{\circ} \mathrm{C}\right]$ to $158^{\circ} \mathrm{F}\left[70^{\circ} \mathrm{C}\right]$						$0^{\circ} \mathrm{F}\left[-18^{\circ} \mathrm{C}\right]$ to $150^{\circ} \mathrm{F}\left[66^{\circ} \mathrm{C}\right]$					
RELEASE TIME	1.0 msec ．max．				－		－					
ON TRIP POINT	－				－		150 Gauss maximum					
OFF TRIP POINT	－				－		40 Gauss minimum					
＊＊POWER RATING（WATTS）	$10.0{ }^{\text {§ }}$		$3.0{ }^{\text {§§ }}$		10.0		5.0					
VOLTAGE DROP	2.6 V typical at 100 mA		NA		－		－					
RESISTANCE	0.1Ω Initial（Max．）				－		－					
CURRENT CONSUMPTION	－				1 Amp at $86^{\circ} \mathrm{F}\left[30^{\circ} \mathrm{C}\right]$	0.5 Amp at $140^{\circ} \mathrm{F}\left[60^{\circ} \mathrm{C}\right]$	200 mA at 25 Vdc					
FREQUENCY	－				$47-63 \mathrm{~Hz}$		－					
CABLE MIN．	0.630 ＂［16mm］											
BEND RADIUS DYNAMIC	Not Recommended											

A
 CAUTION：DO NOT OVER TIGHTEN SWITCH HARDWARE WHEN INSTALLING！

A
${ }^{* *}$ WARNING：Do not exceed power rating（Watt＝Voltage X Amperage）．Permanent damage to sensor will occur．
＊QD＝Quick Disconnect；Male coupler is located 6＂［152mm\} from sensor,
Female coupler to flying lead distance is 197＂［ 5 m ］also see Cable Shielding specification above
REPLACEMENT OF QD SWITCHES MANUFACTURED BEFORE JULY 1，1997：It will be necessary to replace or rewire the female end coupler．

Reed Switch Life Expectancy：Up to
$200,000,000$ cycles（depending on load cur－ rent，duty cycle and environmental conditions）

[^0]${ }^{\text {§ }}$ Maximum current 500 mA （not to exceed 10VA）Refer to Temperature vs．Current graph and Voltage Derating graph
${ }^{\text {ss }}$ Maximum current 250 mA （not to exceed 3VA）Refer to Temperature vs．Current graph and Voltage Derating graph

SLS Rodless Screw Drive Actuator

PERFORMANCE

TEMP．vs CURRENT，DC REED

WIRING DIAGRAMS
RT \＆圆 ${ }^{\text {M DC REED，FORM A }}$

TEMP．vs CURRENT，AC REED

CTT \＆C M AC REED，TRIAC

VOLTAGE DERATING，DC REED

INSTALLATION INFORMATION

A
THE NOTCHED
FACE OF THE
SWITCH INDICATES
THE SENSING
SURFACE AND
MUST FACE
TOWARD THE
MAGNET．

B T_{T} \＆回 DC REED，FORM C

COMMON O BROWN		$\begin{aligned} & \text { REEDD } \\ & \text { SWITCH } \end{aligned}$
NORMALLY CLOSED	BLACK	
NORMALLY OPEN	BLUE	

TT \＆TM HALL－EFFECT，SOURCING，PNP 团 \＆国四 HALL－EFFECT，SINKING，NPN

COMPILE APPLICATION REQUIREMENTS
ORIENTATION

APPLICATION DATA WORKSHEET
Fill in known data. Not all information is required for all applications

BENDING MOMENTS M_{x} APPLIED TO CARRIER My_{y}
\qquad $\begin{array}{ll}\square \text { in. -lbs. } & \square \mathrm{N}-\mathrm{m} \mathrm{M} \mathrm{M}_{\mathrm{Z}} \\ \text { (U.S. Standard) } & \text { (Metric) }\end{array}$
\qquad

PRECISION

Repeatability
\square inch
\square millimeters

OPERATING ENVIRONMENT
Temperature, Contamination, etc.

MOTION PROFILE

Graph your most demanding cycle, including accel/decel, velocity and dwell times. You may also want to indicate load variations and I/O changes during the cycle. Label axes with proper scale and units.

USE THE TOLOMATIC SIZING AND SELECTION SOFTWARE AVAILABLE ON-LINE AT www.tolomatic.com OR... CALL TOLOMATIC 1-800-328-2174 with the above information. We will provide any assistance needed to determine the proper MX actuator for the job.

FAX 1-763-478-8080
CONTACT
INFORMATION
Name, Phone, Email
Co. Name, Etc.

SELECTION GUIDELINES

The process of selecting a load bearing actuator for a given application can be complex. It is highly recommended that you contact Tolomatic or a Tolomatic Distributor for assistance in selecting the best actuator for your application. The following overview of the selection guidelines are for educational purposes only.

1COMPARE LOAD TO MAXIMUM LOAD CAPACITIES
Calculate the application load (combination of load mass and forces applied to the carrier) and application bending moments (sum of all moments Mx, My, and Mz applied to the carrier). Be sure to evaluate the magnitude of dynamic inertia moments. When a rigidly attached load mass is accelerated or decelerated, its inertia induces bending moments on the carrier. Careful attention to how the load is decelerated at the end of the stroke is required for extended actuator performance and application safety. If either load or any of your moments exceed figures indicated in the Moment and Load Capacity table (pg. sLs_8) for the actuator consider:

1) Higher capacity bearing style
2) A different actuator style
(B3S, MXE, etc.)
3) Auxiliary carrier
4) External guide system

2
CALCULATE LOAD FACTOR LF
For loads with a center of gravity offset from the carrier account for both applied (static) and dynamic loads. The load factor (LF) must not exceed the value of 1 .
$L_{4}=\frac{M_{x}}{W_{x_{\text {max }}}}+\frac{M_{y}}{W_{y_{\text {max }}}}+\frac{M_{z}}{M_{\text {max }}}+\frac{F_{y}}{F_{y_{\text {max }}}}+\frac{F_{2}}{F_{z_{\text {max }}}} \leq 1$
If Lf does exceed the value of 1 , consider the four choices listed in step \#2.

3ESTABLISH YOUR MOTION PROFILE AND CALCULATE ACCELERATION RATE
Using the application stroke length and maximum carrier velocity (or time to complete the linear motion), establish the motion profile. Select either triangular (accel-decel) or trapezoidal (accel-constant speed-decel) profile. Now calculate the maximum acceleration and deceleration rates of the

SPEED FACTOR

FOR APPLICATIONS WITH HIGH SPEED OR SIGNIFICANT SHOCK AND VIBRATION: Calculated values of loads and bending moments must be increased by speed factor from the graph below to obtain full rated life of profiled rail bearing system.

move. Speed should not exceed critical speed value as shown in graph (page SLs_4-5) for the screw/nut combination chosen. Also, do not exceed safe rates of dynamic inertia moments determined in step \#3.

4 select the lead SCREW

Based on the application requirements for accuracy, backlash, quiet operation, life, etc. select the appropriate lead screw type (Acme screw with a solid nut or ball screw with a standard or anti-backlash nut) and the pitch (lead). For additional information on screw selection, consult "Which Screw? Picking the Right Technology" (\#9900-4644) available at www.tolomatic. com.

\square SELECT MOTOR (GEARHEAD IF NECESSARY) AND DRIVE

To help select a motor and drive, use the sizing equations located in the Engineering Resources section [ENGR] to calculate the application thrust and torque requirements. Refer to Motor sections [MRv] \& [MRS] to determine the motor and drive.

> ค DETERMINE
> T-NUTS/ MOUNTING PLATE

REQUIREMENTS

- Consult the Support Recommendations graph for the model selected (page sts_7)
- Cross reference the application load and maximum distance between supports
- Select the appropriate number of T-nuts, and mounting plates if required for motor and adapter clearance.

7 consider options

- Choose metric or inch (US Conventional) load mounting.
- Switches - Reed, Solid State PNP or NPN, all available normally open or normally closed

SLS Rodless Screw Drive Actuator

BASE MODEL SPECIFICATIONS

MODEL TYPE

SLS SLS Series US Conventional Screw Drive

NUT/SCREW CONFIGURATION	
INCH MODELS (US Conventional)	METRIC MODELS \dagger
SOLD NUT / PITCH (turnin)	SOLD NUT / LEAD (mm/urn)
$\begin{aligned} & \text { SNO1 } \\ & \text { SNO2 } \\ & \text { SNAO2 } \\ & \text { SNO5 } \end{aligned}$	$\begin{aligned} & \text { SN25 } \\ & \text { SN12 } \end{aligned}$
Ball NUT/ PITCH (turnin) BNO8 BNL08	BALL NUT/ LEAD (turn/in) BN08 BNL08

\dagger The metric version provides metric tapped holes for mounting of the load to the carrier and of the actuator to mounting surfaces

STROKE LENGTH \& MOUNTING TYPE
SK ---

Stroke, enter desired stroke length in inches
SM \dagger \qquad Stroke, enter desired stroke length in millimeters
NOTE: Actuator mounting threads and mounting fasteners will be either inch or metric; depending on how stroke length is indicated.
$\mathbf{S K}=$ inch mounting
$\mathbf{S M}=$ metric mounting

FIELD RETROFIT KITS		
ITEM	SLS10_SK	SLS10_SM
1/4" Mounting Plates	$0610-9010$	$0610-9010$
$1 / 2^{" ~ M o u n t i n g ~ P l a t e s ~}$	$0610-9045$	$0610-9045$

(must choose one)

LMI In-Line mounting
*LMX Extended shatt - old style (see note)
** For replacement actuators with extended motor shafts purchased prior to 6/24/02 use LMX

AUXILIARY CARRIER (SLS_8)

DC Auxiliary Carrier, then center-tocenter spacing desired in in inches (SK) or millimeters (SM). Same unit of measure as stroke length is required)

Center-to-center spacing between carriers adds to overall length of the actuator, this distance will not be subtracted from stroke length specified in the previous step.

MINIMUM " D " DISTANCE BETWEEN CARRIERS

	in	mm
$\mathbf{1 0}$	5.5	169.7

"YOUR MOTOR HERE" MADE-TO-ORDER MOTOR MOUNTS. 3 WEEKS.

- Select a high-performance Tolomatic electric actuator and we'll provide a motor-specific interface for your motor. With our online database, you can select from over 60 motor manufacturers and hundreds of models.

Visit www.tolomatic.com/ymh to find your motor/actuator match!

OPTIONS SPECIFICATIONS

RM_ Reed Switch (Form A) with 5-meter lead/QD (quick-disconnect), \& quantity
RT_ Reed Switch (Form A) with 5-meter lead, and quantity desired
BM_ Reed Switch (Form C) with 5-meter lead/QD, and quantity desired
BT_ Reed Switch (Form C) with 5-meter lead, and quantity desired
KM_ Hall-effect Sinking Switch with 5-meter lead/QD, and quantity desired
KT_ Hall-effect Sinking Switch with 5-meter lead, and quantity desired
TM_ Hall-effect Sourcing Switch with 5-meter lead/QD, and quantity desired
TT_ Hall-effect Sourcing Switch with 5-meter lead, and quantity desired
CM_TRIAC Switch with 5-meter lead/QD, and quantity desired
CT_ TRIAC Switch with 5 -meter lead, and quantity desired

T-NUT OPTION

TN_ Additional T-nuts and quantity

MOUNTING PLATES
MP_Mounting Plates plus quantity desired

FOOD GRADE LUBRICATION
LUB Grease, Food/Drug

A
Not all codes listed are compatible with all options.
Use the Sizing Software to determine available options and accessories based on your application requirements.

[^1]
The Tolomatic Difference Expect More From the Industry Leader:

Tolomatic designs and builds the best standard products, modified products \& unique custom products
for your challenging applications.

The fastest delivery of catalog products... Electric products are built-to-order in 15 or 20 days; Pneumatic \& Power Transmission products in 5 days.

Online sizing that is easy to use, accurate and always up-to-date. Find a Tolomatic electric actuator to meet your requirements.

Match your motor with compatible mounting plates that ship with any Tolomatic electric actuator.

Easy to access CAD files available in the most popular formats to place directly into your assembly.

Our people make the difference! Expect prompt, courteous replies to all of your application and product questions.

Also Consider These Other Tolomatic Products:

Electric Products

Rod \& Guided Rod Style Actuators, High Thrust Actuators, Screw \& Belt Drive Rodless Actuators, Motors, Drives and Controllers
"Foldout" Brochure \#9900-9074

Pneumatic Products

Rodless Cylinders: Band Cylinders, Cable Cylinders, Magnetically Coupled Cylinders/Slides; Guided Rod Cylinder Slides
"Foldout" Brochure \#9900-9075

Power Transmission Products
Gearboxes: Float-A-Shaft ${ }^{\oplus}$, Slide-Rite ${ }^{\oplus}$; Disc Cone Clutch; Caliper Disc Brakes
"Foldout" Brochure \#9900-9076

USA

3800 County Road 116 Hamel, MN 55340, USA Phone: (763) 478-8000 Fax: (763) 478-8080
Toll-Free: 1-800-328-2174 sales@tolomatic.com www.tolomatic.com

CHINA
Tolomatic Automation Products
(Suzhou) Co. Ltd.
(ServoWeld ${ }^{\text {® }}$ inquiries only)
No. 60 Chuangye Street, Building 2 Huqiu District, SND Suzhou Jiangsu 215011 - P.R. China
Phone: +86 (512) 6750-8506
Fax: +86 (512) 6750-8507
ServoWeldChina@tolomatic.com

COMPANY WITH
QUALITY SYSTEM CERTIFIED BY DNV GL = ISO 9001 = Certified site: Hamel, MN

EUROPE

Tolomatic Europe GmbH

Elisabethenstr. 4 \& 8
D-65428 Rüsselsheim
Germany
Phone: +49 6142 17604-0
EuropeSales@tolomatic.com

[^2]Visit www.tolomatic.com for the most up-to-date technical information

[^0]: ＇Shielded from the female quick disconnect coupler to the flying leads．Shield should be terminated at flying lead end．

[^1]: ,
 NOTE: MRB \& MRV motors are discontinued contact Tolomatic for information on YMH (Your Motor Here)

[^2]: All brand and product names are trademarks or registered trademarks of their respective owners. Information in this document is believed accurate at time of printing. However, Tolomatic assumes no responsibility for its use or for any errors that may
 appear in this document. Tolomatic reserves the right to change the design or operation of the equipment described herein and any associated motion products without notice. Information in this document is subject to change without notice.

