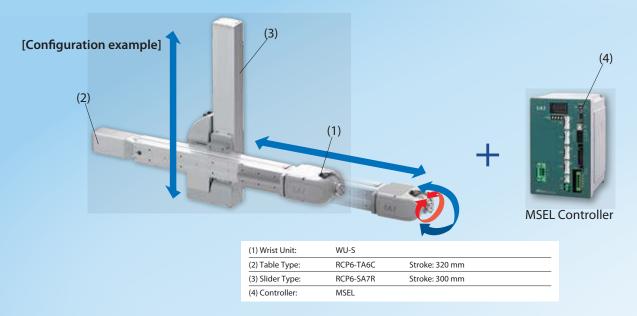
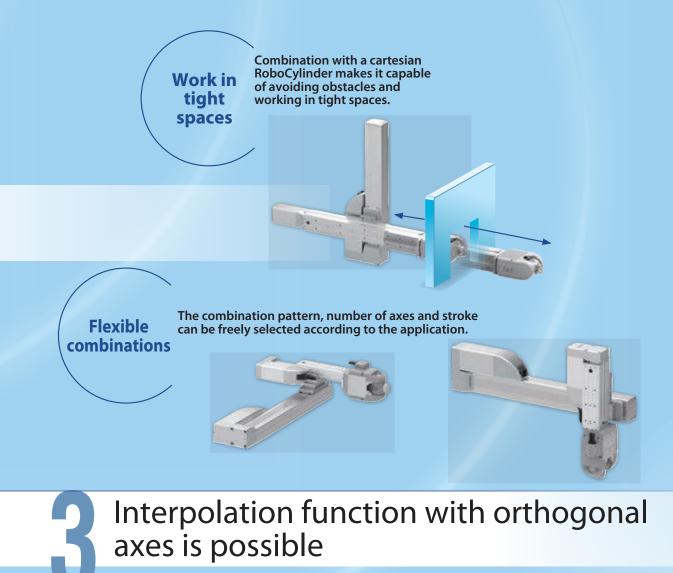
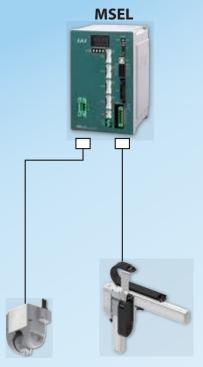


Wrist Unit WU


www.robocylinder.de

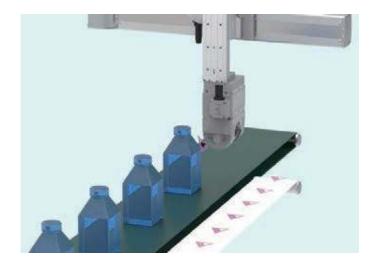

2-axis rotary joint unit Wrist Unit is now available

Ideal for cost reduction of equipment. Low cost compared to 6-axis articulated robots.


Diagonal approaches and tip swiveling, possible until now only with vertical articulated robots, can now be performed with the minimum required axis configuration. Ideal for cost reduction of equipment.

When connecting Wrist Unit and **2-axis** combination ^(*)

(*) Mounted pulse motor actuators



Wrist UnitSingle Axis/Cartesian(for 2 axes)RoboCylinder (up to 2 axes)

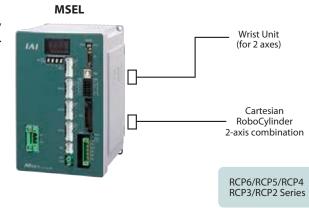
Application Examples

Bottle labeling equipment

This device affixes labels to bottles. Adjusts the angle to the labeling surface on the B-axis and rotates the label on the T-axis to change the orientation.

Automotive connector inspection equipment

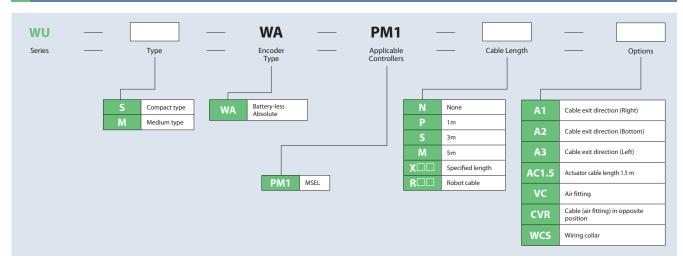
This device inspects the external view of connectors for automobiles, using a camera.


The Wrist Unit rotates the connector for inspection from various angles.

Controller connection example

"Wrist Unit + RoboCylinder 2-axis combination" can be controlled with a single MSEL controller.

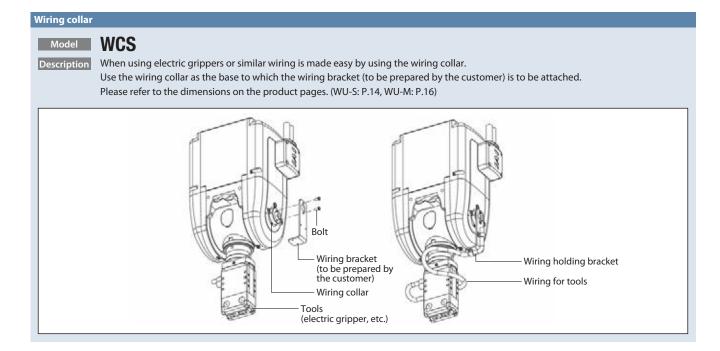
3


WU Seri	es List				WO Wrist On
[Гуре	Compa	ct type	Medium type	
N	lodel	WL	J-S	WL	J-M
External view					
Axis combination		B-axis (wrist swing)	T-axis (wrist rotation)	B-axis (wrist swing)	T-axis (wrist rotation)
Operation range		±100 deg.	±360 deg.	±105 deg.	±360 deg.
Max. torque *1		0.65N⋅m	0.65N⋅m	1.65N⋅m	1.65N⋅m
	allowable of inertia *2	0.0085kgm ²	0.0075kgm ²	0.015kgm ²	0.0165kgm ²
Max. lo	oad weight	1kg		2kg	
	Independent operation	750 deg/s	1200 deg/s	900 deg/s	1200 deg/s
Max. speed *3	Simultaneous operation of the B- and T-axes	600 deg/s	600 deg/s	600 deg/s	600 deg/s
Max. acceleration/	Without load torque *4	0.7 G (6865 deg/s ²)	0.7 G (6865 deg/s²)	0.7 G (6865 deg/s²)	0.7 G (6865 deg/s ²)
deceleration	With load torque *4	0.3 G (2942 deg/s ²)			
Mot	tor type	28 Pulse motor	28 Pulse motor	35 Pulse motor	35□ Pulse motor
Unit	tweight	1.6		2.8kg	
Reference page		P.13		P.15	

*1 Indicates the maximum torque at low speed. The output torque varies with the speed. *2 Indicates the maximum moment of inertia in rotation. Value when the acceleration is 0.3 G.

*3 Maximum set speed with no load.

*4 When the rotational axes of the B-axis and T-axis are horizontal with respect to the floor surface or when the center of gravity of the transported object is offset from the rotational axis, the unit will be subject to load torque due to the weight of the object. The allowable moment of inertia decreases when load torque is present. Please refer to "Model Selection Process (P.7 on)" for more information.


Model Specification Items

WU Wrist Unit Options **Cable exit direction** Model A1 / A2 / A3 Description Specify when changing the actuator cable exit direction. Top direction exit (standard) Exit to right side Exit to bottom Exit to left side Option specified: A3 No option specified (blank) Option specified: A1 Option specified: A2 1 0A0 //∀

Actuator ca	ible length 1.5 m
Model	AC1.5
Descriptio	This option extends the length of the actuator cable exiting the actuator body to 1.5 m. (Standard length is 0.2 m)
	When this option is selected, the maximum cable length between the actuator and controller will be 18 m (X18, R18).

Air fitting	
Model	VC
Description	This option allows attachment of an air fitting (ø6) for connecting pneumatic devices such as vacuum pads to the side of the main body. It is mounted on the same side as the actuator cable outlet. Please refer to the dimensions on the product pages. (WU-S: P.14, WU-M: P.16)

Cable (air fitting) in opposite position

Model CVR

Description This option allows the actuator cable outlet, air fitting, and wiring collar (optional) to be mounted on the other side (opposite position). Please refer to the dimensions on the product pages. (WU-S: P.14, WU-M: P.16)

Mounting Method

Body mounting method

The body mounting surface should be a machined surface or a plane with similar accuracy.

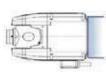
The actuator has screw holes and positioning holes for body mounting on the top (mounting surface A) and side (mounting surface B). For details on positions and dimensions, refer to the product pages.

(1) When using mounting surface A

(Thread depth WU-S: M4 through (screw depth: 6) / WU-M: M5 through (screw depth: 10)

Positioning holes (1 oblong hole, 1 reamed hole) Bolt Mounting screw holes Positioning pin (4 holes) Body mounting bracket Positioning pin Positioning spigot Mounting screw holes Body mounting bracket (4 holes) Positioning holes Mounting surface A (2 oblong holes) Mounting surface B Bolt

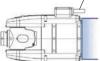
Body installation orientation


All 6 orientations below are possible. Mechanical interface

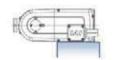
(1) Mechanical interface look down

(2) Mechanical interface look up

(2) When using mounting surface B


(Thread depth WU-S: M4 depth 8 / WU-M: M5 depth 10)

(3) Actuator cable bottom



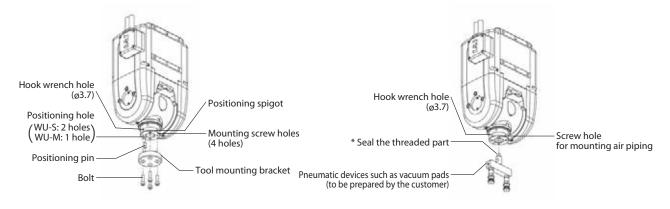
(5) Mounting surface B top

Actuator cable

(4) Actuator cable top

(6) Mounting surface B bottom

Tool mounting method

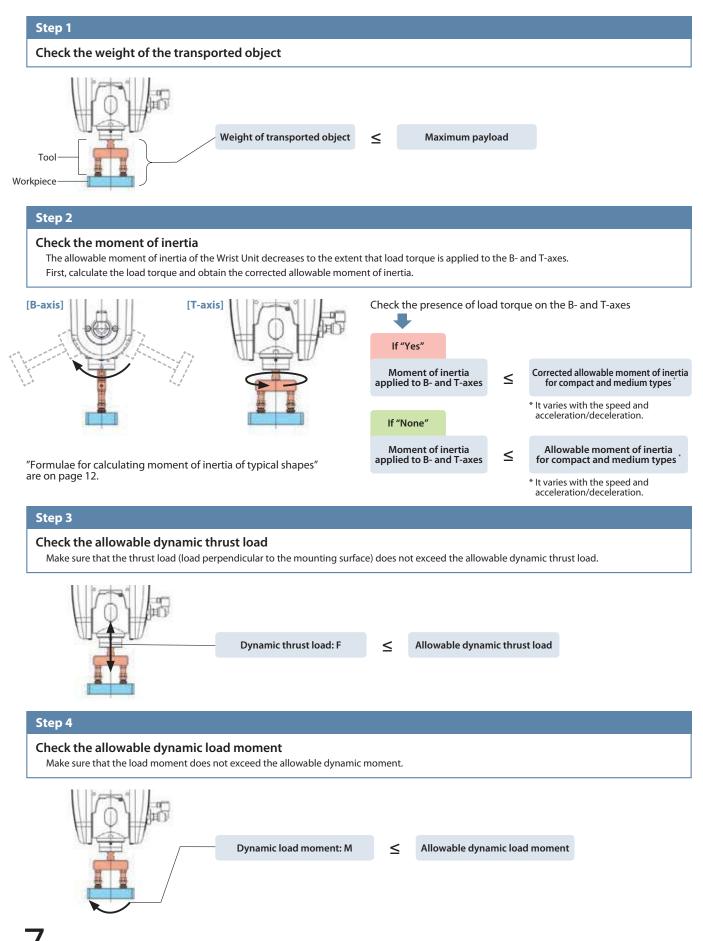

The unit has screw holes for bracket mounting to the body tip (mechanical interface), screw holes for air piping mounting, and positioning holes. Refer to the dimensions (WU-S: P.14, WU-M: P.16) for details regarding the position and dimensions. Do not apply excessive force to the output shaft when tightening bolts or air piping threads. The mechanical interface has holes for a hook wrench. Use these to fix the output shaft in the rotating direction.

(1) When using bracket mounting screws

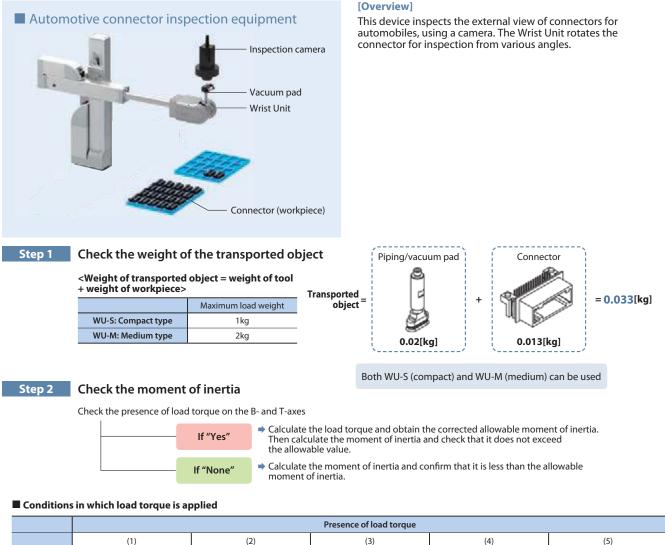
(Thread depth WU-S: M4 depth 6 / WU-M: M4 through (screw depth: 6)

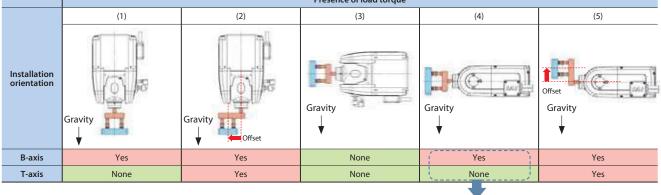
(2) When using air piping mounting screws Seal the threaded part of the air piping with sealing tape, etc.

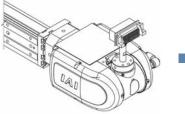
(Thread depth WU-S: M6 through (screw depth: 4.5) / WU-M: M6 through (screw depth: 4.5)



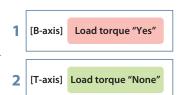
Reference Data

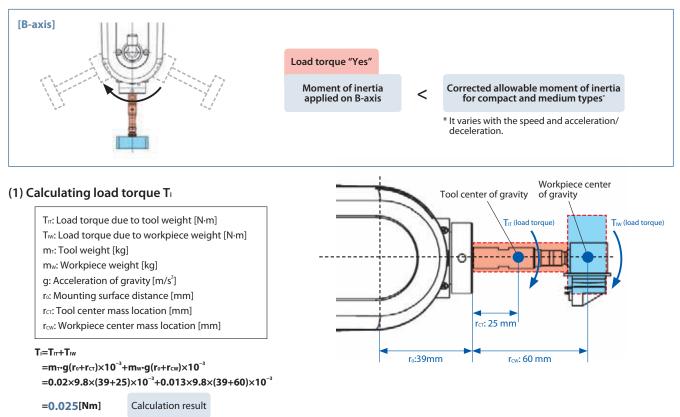

Model Selection Process

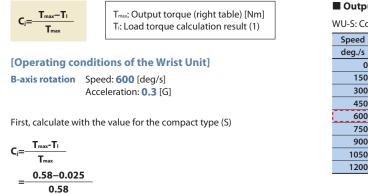

Follow steps 1 through 4. For a selection example, refer to the following pages.


Model Selection Example: Automotive Connector Inspection Equipment

The model selection example given is based on the application example "Automotive connector inspection equipment" (P. 3).






As the current example of the "automotive connector inspection equipment" corresponds to these, the B-axis and T-axis are calculated and confirmed as described below.

1. Check B-axis

(2) Calculating the allowable moment of inertia correction factor Cj

Output torque by speed [Nm]

WU-S: Compact type				
Speed	B-axis	T-axis		
deg./s	D-dxis	I-dXIS		
0	0.65	0.65		
150	0.65	0.65		
300	0.62	0.62		
450	0.6	0.6		
600	0.58	0.58		
750	0.52	0.52		
900	0.45	0.45		
1050	0.45	0.45		
1200	0.45	0.45		

WU-M: Medium type

21			
Speed	B-axis	T-axis	
deg./s		I-dXIS	
0	1.65	1.65	
150	1.65	1.65	
300	1.65	1.65	
450	1.65	1.65	
600	1.58	1.58	
750	1.36	1.36	
900	1.14	1.14	
1050	0.96	0.96	
1200	0.79	0.79	

(3) Calculating the corrected allowable moment of inertia $J_{\rm tl}$

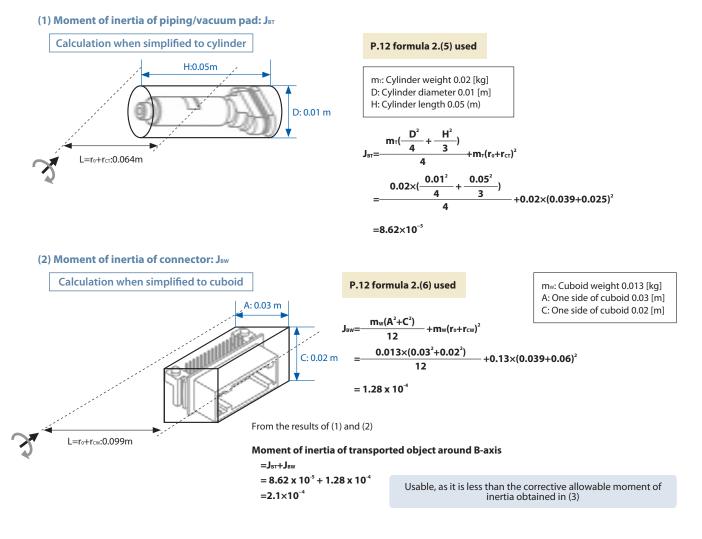
Calculation result

=0.96

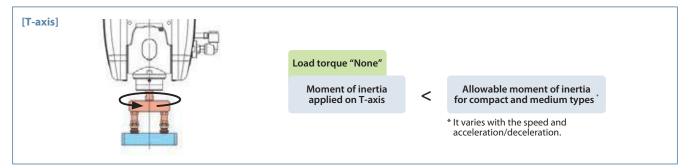
J_{II}=J_{max}C_i (kgm²) J_{max}: Allowable moment of inertia (right table) [kgm²] C_i: Allowable moment of inertia correction factor calculation result (2) J_{II}=0.008×0.96 =0.0077 Calculation result

Allowable moment of inertia by speed/acceleration [kgm²]

WU-S: Compact type				
Speed	B-axis	T-axis		
speed	Acceleration	/deceleration		
deg./s	0.3G	0.3G		
0	0.008	0.0035		
150	0.008	0.0035		
300	0.008	0.0035		
450	0.008	0.0035		
600	0.008	0.0035		
750		0.0035		
900		0.0035		
1050		0.0035		
1200		0.0025		

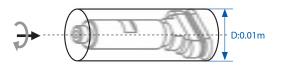

WU-M: Medium type				
Speed	B-axis	T-axis		
Speed	Acceleration/deceleration			
deg./s	0.3G	0.3G		
0	0.0150	0.0126		
150	0.0150	0.0126		
300	0.0118	0.0072		
450	0.0055	0.0054		
600	0.0055	0.0054		
750		0.0054		
900		0.0036		
1050		0.0036		
1200		0.0036		

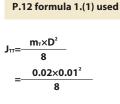
(4) Checking the moment of inertia of the transported object


Using the Formulae for calculating moment of inertia of typical shapes (P.12), calculate the moment of inertia of the tool and workpiece to be used and make sure they do not exceed the corrected allowable moment of inertia (4) \leq (3) obtained in (3).

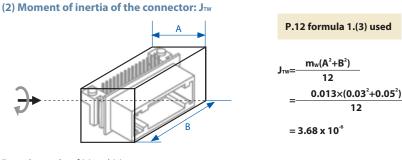
Points

Calculations can be made easier by positing simplified shapes for transported objects such as tools and workpieces.




2. Checking T-axis

If load torque is not applied, using the Formulae for calculating moment of inertia of typical shapes (P.12), calculate the moment of inertia of the tool and workpiece to be used and make sure they do not exceed the corrected allowable moment of inertia.


(1) Moment of inertia of piping/vacuum pad: $J_{\rm TT}$

m₁: Cylinder weight 0.02 [kg] D: Cylinder diameter 0.01 [m]

=2.50×10⁻⁷

m_w: Cuboid weight 0.013 [kg] A: One side of cuboid 0.03 [m] B: One side of cuboid 0.05 [m]

From the results of (1) and (2)

Moment of inertia of transported object around T-axis

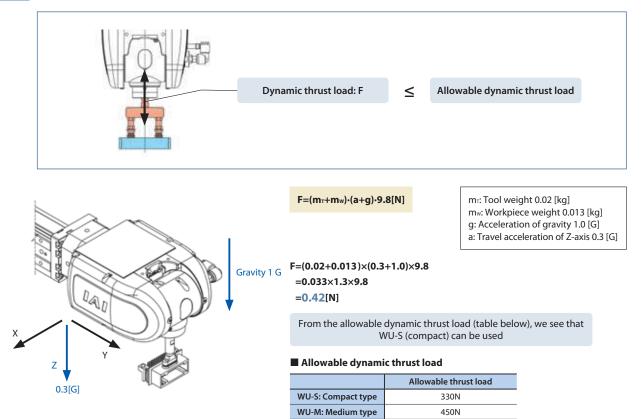
=J_π+J_{TW} =2.50×10⁻⁷+3.68×10⁻⁶ =3.9×10⁻⁶[kgm²]

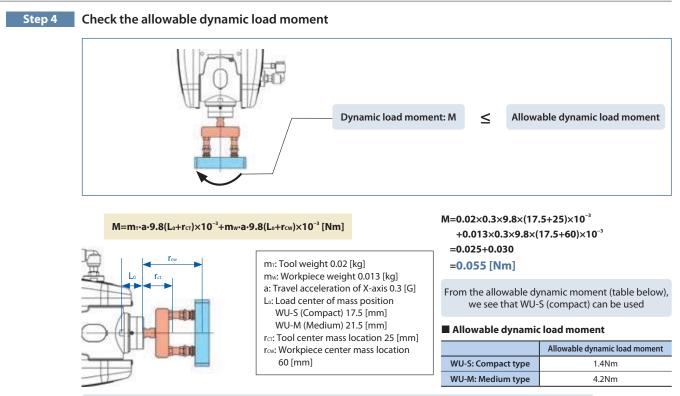
From the allowable moment of inertia (table below), we see that WU-S (compact) can be used

WI I-M· Medium type

[Operating conditions of the Wrist Unit]

T-axis rotation speed: 600 [deg/s] Acceleration: 0.3 [G]


Allowable moment of inertia by speed/acceleration [kgm²]


WU-S: Compact type **B**-axis T-axis Speed Acceleration/deceleration deg./s 0.3G 0.7G 0.3G 0.7G 0.0085 0.0065 0.0075 0.0035 0 150 0.0085 0.0065 0.0075 0.0035 300 0.0085 0.005 0.0065 0.0035 450 0.0085 0.005 0.0065 0.0025 600 0.0085 0.005 0.0065 0.0025 750 0.0065 0.005 0.0025 0.0025 900 0.0065 1050 0.0065 0.0025 0.0065 0.0025 1200

Speed	B-axis		T-axis			
speed	Acceleration/deceleration			1		
deg./s	0.3G	0.7G	0.3G	0.7G		
0	0.0150	0.0145	0.0165	0.0126		
150	0.0150	0.0145	0.0165	0.0126		
300	0.0150	0.0127	0.0165	0.0090		
450	0.0099	0.0045	0.0126	0.0063		
600	0.0090	0.0036	0.0108	0.0054		
750		0.0036	0.0099	0.0054		
900		0.0036	0.0099	0.0045		
1050			0.0081	0.0045		
1200			0.0081	0.0045		

Step 3

Check the allowable dynamic thrust load

WU-S (compact) can be used, as seen from the results of steps 1 to 4

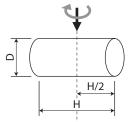
Formulae for calculating moment of inertia of typical geometrical shapes

1. When the rotational axis passes through the center of the object

(1) Moment of inertia of cylinder 1

* The same formula can be applied irrespective of the height of the cylinder (also for circular plate)

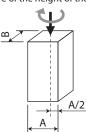
<Formula>I = M x D²/8


Moment of inertia of cylinder: I $(kg \cdot m^2)$ Cylinder weight: M (unit: kg) Cylinder diameter: D (m)

(2) Moment of inertia of cylinder 2

<Formula> I = M x (D²/4 + H²/3) / 4

Moment of inertia of cylinder: I (kg·m²) Cylinder weight: M (kg) Cylinder diameter: D (m) Cylinder length: H (m)



(3) Moment of inertia of cuboid 1

* The same formula can be applied irrespective of the height of the cuboid (also for rectangular plate)

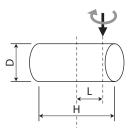
<Formula> I = M x (A² + B²) / 12

Moment of inertia of cuboid: I (kg·m²) First side of cuboid: A (m) Second side of cuboid: B (m)

2. When the center of the object is offset from the rotational axis

(4) Moment of inertia of cylinder 3

* The same formula can be applied irrespective of the height of the cylinder (also for circular plate)

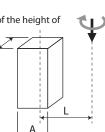

\langle Formula \rangle I = M x D²/8 + M x L²

Moment of inertia of cylinder: I (kg·m²) Cylinder weight: M (kg) Cylinder diameter: D (m) Distance from rotational axis to center: L (m)

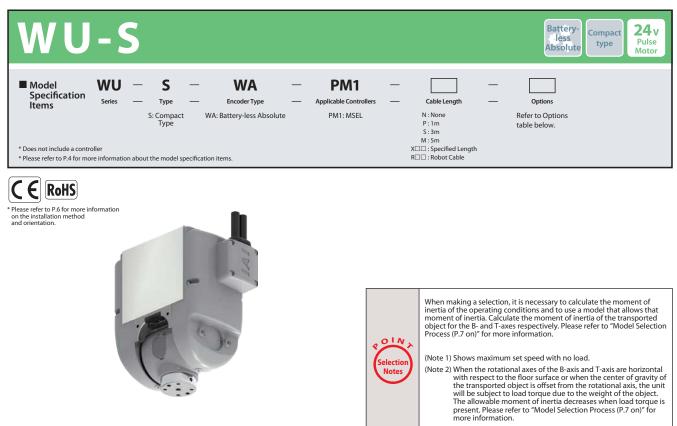
(5) Moment of inertia of cylinder 4

<Formula> I = M x (D²/4 + H²/3) / 4 + M x L²

Moment of inertia of cylinder: I (kg·m²) Cylinder weight: M (kg) Cylinder diameter: D (m) Cylinder length: H (m) Distance from rotational axis to center: L (m)


Ď

(6) Moment of inertia of cuboid 2


* The same formula can be applied irrespective of the height of the cuboid (also for rectangular plate)

<Formula> I = M x (A² + B²) / 12 + M x L²

Moment of inertia of cuboid: I (kg·m²) Cuboid weight: M (kg) First side of cuboid: A (m) Second side of cuboid: B (m) Distance from rotational axis to center: L (m)

WU Wrist Unit

Actuator Specifications

			Max. speed (Note 1) (deg/s)			Max. acceleration/deceleration (G)	
Model		Operation range (deg.)		Simultaneous operation of the B- and T-axes	Max. payload (kg)	Without load torque (Note 2)	With load torque (Note 2)
	B-axis (wrist swing)	±100	750	600		0.7 G (6865 deg/s²)	0.3 G (2942 deg/s²)
WU-S-WA-PM1- 🕕 - 🗵	T-axis (wrist rotation)	±360	1200	600	I	0.7 G (6865 deg/s²)	0.3 G (2942 deg/s²)

Legend: 1 Cable length 2 Options

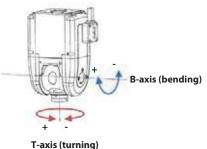
Cable Length <per axis *1>

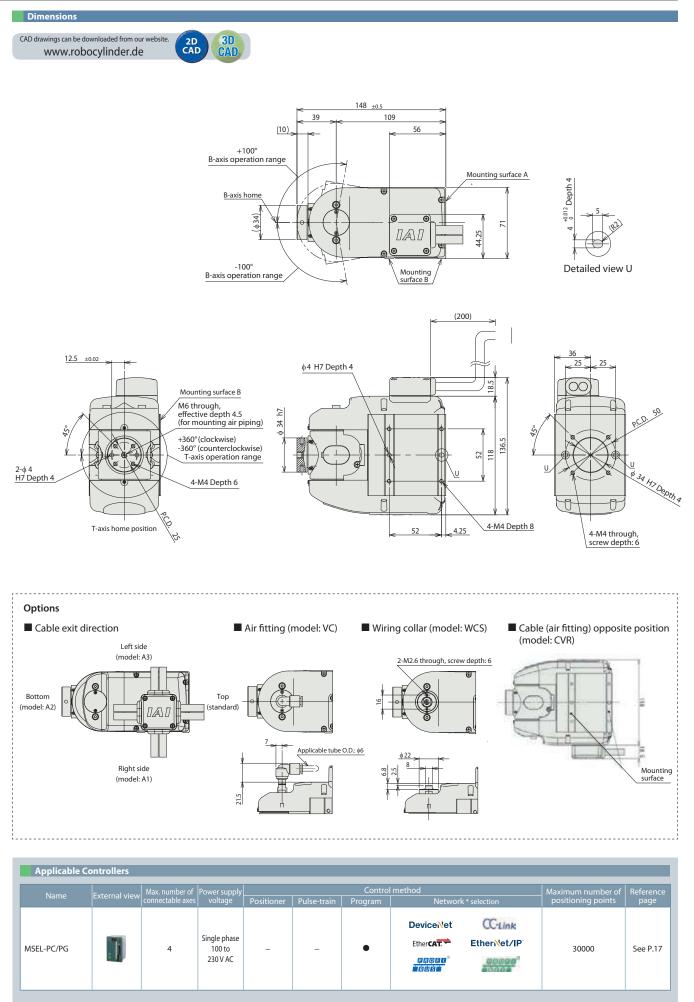
Туре	Cable code	
	P (1m)	
Standard type	S (3m)	
	M (5m)	
	X06 (6m) to X10 (10m)	
Specified length	X11(11m) to X15(15m)	
	X16(16m) to X20(20m) *2	
	R01(1m) to R03(3m)	
	R04(4m) to R05(5m)	
Robot cable	R06(6m) to R10(10m)	
	R11(11m) to R15(15m)	
	R16(16m) to R20(20m) *2	

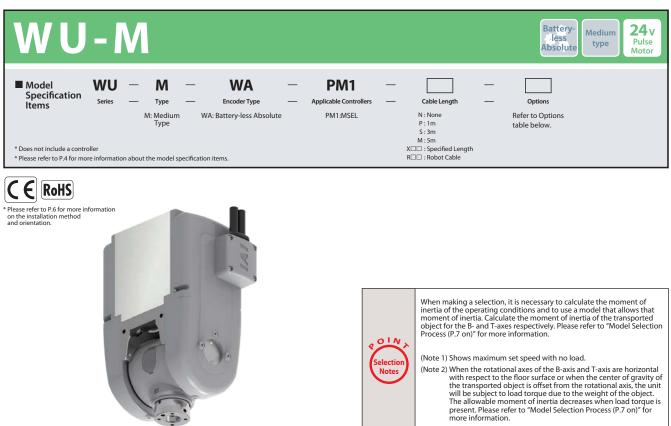
Cable between actuator and controller. *1 Required for both B- and T-axes. Select the cable length in the model name to have 2 cables attached.

*2 When actuator cable length change "AC1.5" is selected as an option, 18 m (X18, R18) will be the maximum length.

Options


Name	Option code	Reference page
Cable exit direction (Right)	A1	See P.5, P.14
Cable exit direction (Bottom)	A2	See P.5, P.14
Cable exit direction (Left)	A3	See P.5, P.14
Actuator cable length 1.5 m	AC1.5	See P.5, P.14
Cable (air fitting) in opposite position	CVR	See P.5, P.14
Air fitting	VC	See P.5, P.14
Wiring collar	WCS	See P.5, P.14


Actuator Specifications


ltem	Description			
item	B-axis (wrist swing)	T-axis (wrist rotation)		
Drive system	Pulse motor + timing belt	Pulse motor + timing belt + bevel gear		
Positioning repeatability	±0.015 deg.	±0.15 deg.		
Lost motion	0.06 degrees	0.4 degrees		
Allowable dynamic thrust load *1	330N			
Allowable dynamic load moment *1	1.4N·m			
Unit weight	1.6kg			
Brake retaining torque *2	0.96N⋅m	0.96N⋅m		
Ambient operating temperature, humidity	0~40°C, 85% RH or less (Non	-condensing)		

*1 Using the unit with a load exceeding the values above leads to reduced service life and/or damage. *2 Equipped with brake as standard.

Name and Coordinates of Each Axis

Actuator Specifications

Model	Axis configuration	Operation range (deg.)	Max. speed (Note 1) (deg/s)			Max. acceleration/deceleration (G)	
			Independent operation	Simultaneous operation of the B- and T-axes	Max. payload (kg)	Without load torque (Note 2)	With load torque (Note 2)
WU-M-WA-PM1-①-②	B-axis (wrist swing)	±105	900	600	2	0.7 G (6865 deg/s²)	0.3 G (2942 deg/s²)
	T-axis (wrist rotation)	±360	1200	600		0.7 G (6865 deg/s²)	0.3 G (2942 deg/s²)
Legend: 1 Cable length 2 Options	1		<u> </u>	1		<u> </u>	*1 G = 9800 deg

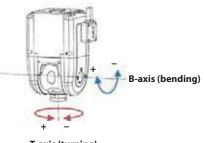
Cable Length <per axis *1>

Туре	Cable code	
	P (1m)	
Standard type	S (3m)	
	M (5m)	
Specified length	X06 (6m) to X10 (10m)	
	X11(11m) to X15(15m)	
	X16(16m) to X20(20m) *2	
Robot cable	R01(1m) to R03(3m)	
	R04(4m) to R05(5m)	
	R06(6m) to R10(10m)	
	R11(11m) to R15(15m)	
	R16(16m) to R20(20m) *2	

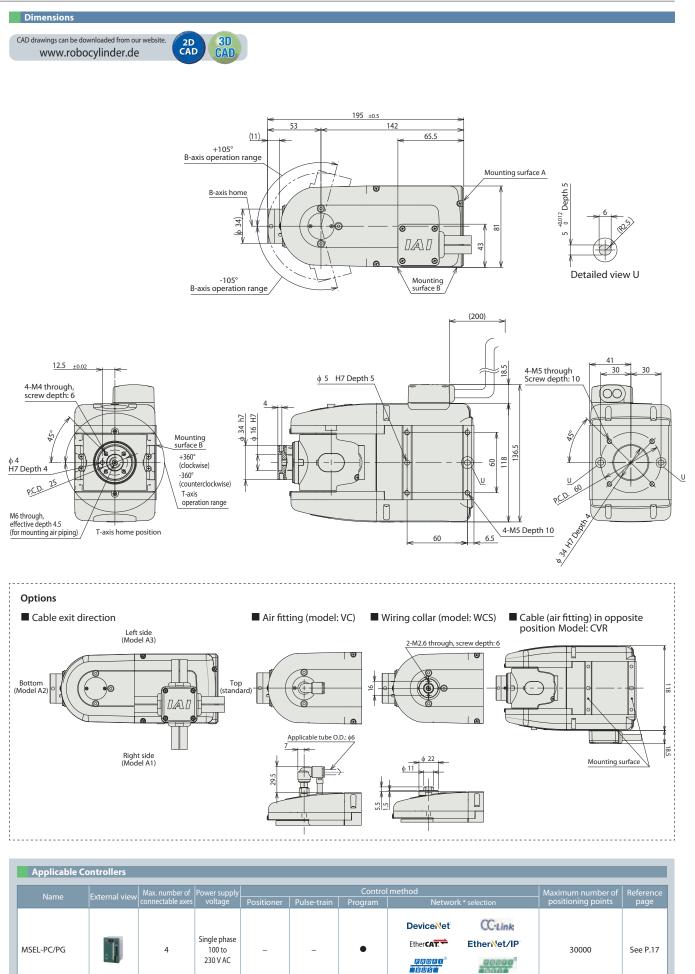
Cable between actuator and controller. *1 Required for both B- and T-axes. Select the cable length in the model name to have 2 cables attached.

² When actuator cable length change "AC1.5" is selected as an option, 18 m (X18, R18) will be the maximum length.

Options


Name	Option Code	Reference page
Cable exit direction (Right)	A1	See P.5, P.16
Cable exit direction (Bottom)	A2	See P.5, P.16
Cable exit direction (Left)	A3	See P.5, P.16
Actuator cable length 1.5 m	AC1.5	See P.5, P.16
Cable (air fitting) in opposite position	CVR	See P.5, P.16
Air fitting	VC	See P.5, P.16
Wiring collar	WCS	See P.5, P.16

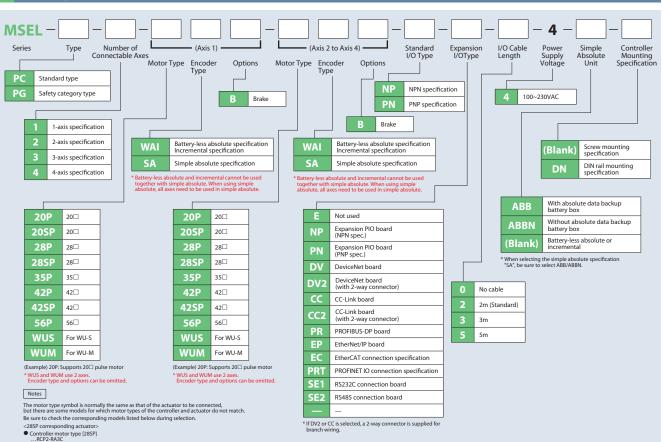
Actuator Specifications


ltem	Description			
item	B-axis (wrist swing)	T-axis (wrist rotation)		
Drive system	Pulse motor + timing belt	Pulse motor + timing belt + bevel gear		
Positioning repeatability	±0.015 deg.	±0.15 deg.		
Lost motion	0.06 degrees	0.4 degrees		
Allowable dynamic thrust load *1	45	ON		
Allowable dynamic load moment *1	4.2N·m			
Unit weight	2.8kg			
Brake retaining torque *2	2.8N⋅m	2.8N⋅m		
Ambient operating temperature/humidity	0~40°C, 85% RH or less (Non-condensing)			

*1 Using the unit with a load exceeding the values above leads to reduced service life and/or damage. *2 Equipped with brake as standard.

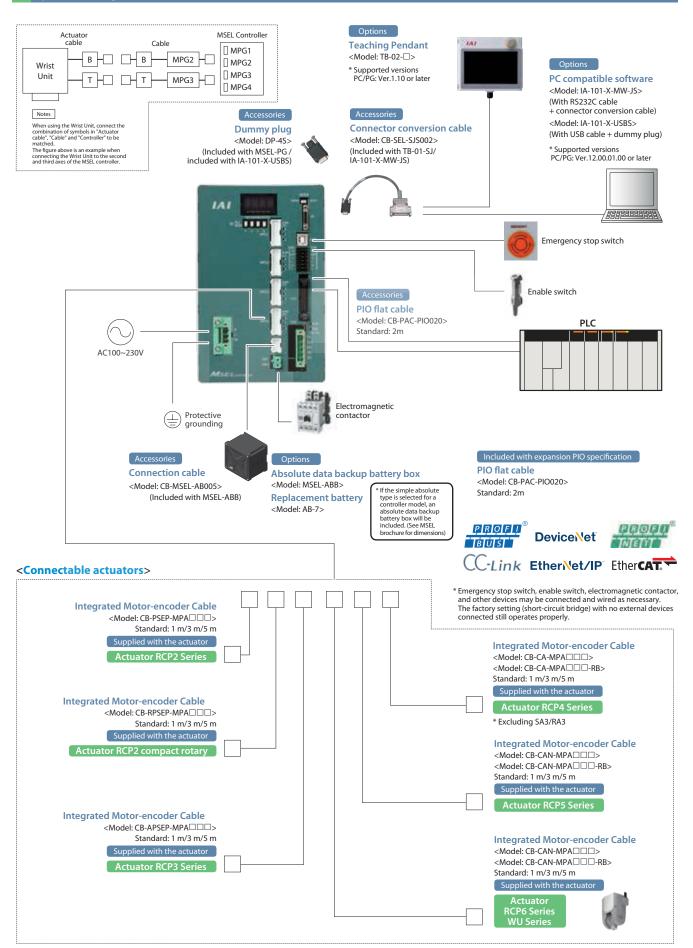
Name and Coordinates of Each Axis

T-axis (turning)


List of Models

Program controller available for operation of RCP6/RCP5/RCP4/RCP3/RCP2 series actuators. A single unit can handle various forms of control with up to 4 axes.

Type name	РС	PG	
Туре	Standard type	Safety category type	
Max. number of controlled axes	4		
No. of positions	30000 points		
Power supply	Single-phase 100~230VAC		
Safety category	В	3 *1	


*1: To comply with the safety category, the customer will need to install a safety circuit externally to the controller.

Model Specification Items

17

System Configuration

The information contained in this catalog is subject to change without notice for the purpose of product inprovement

IAI Industrieroboter GmbH

Ober der Röth 4 D-65824 Schwalbach / Frankfurt Germany Phone: +49-6196-8895-0 Fax: +49-6196-8895-24 E-Mail: info@IAI-GmbH.de Internet: http://www.eu.IAI-GmbH.de

IAI America, Inc.

2690 W. 237th Street, Torrance, CA 90505, U.S.A Phone: +1-310-891-6015, Fax: +1-310-891-0815

IAI (Shanghai) Co., Ltd

Shanghai Jiahua Business Center A8-303, 808, Hongqiao Rd., Shanghai 200030, China Phone: +86-21-6448-4753, Fax: +86-21-6448-3992

IAI CORPORATION

577-1 Obane, Shimizu-Ku, Shizuoka, 424-0103 Japan Phone: +81-543-64-5105, Fax: +81-543-64-5192

IAI Robot (Thailand) Co., Ltd 825 PhairojKijja Tower 12th Floor, Bangna-Trad RD., Bangna, Bangna, Bangkok 10260, Thailand Phone: +66-2-361-4457, Fax: +66-2-361-4456

IAI, the IAI-logo, RoboCylinderTM, the RoboCylinderTM-logo, IntelligentActuatorTM and the IntelligentActuatorTM-logo are trademarks or product names of IAI Corporation or of the subsidiaries in USA, China, Thailand or Germany